Как проверить ключи питания процессора
Перейти к содержимому

Как проверить ключи питания процессора

  • автор:

Как работает электричество. Всё про шим и элементы материнской платы

Искры от замыкания

Друзья, статья написана для обучения мастера по ремонту компьютеров и ноутбуков, поэтому большинство теоретических вещей сводятся к прикладному применению. Поехали!

Компьютер питается электричеством и работает с его помощью. По сути никто не знает, что такое электричество, но известно как его измерять и каким законам оно подчиняется. Для нас проще всего представить, что электричество это как вода в трубах, а краники, манометры и прочее — это элементы электрической цепи на плате ноутбука или компьютера.

Для работы с электричеством нужно знать четыре величины измерения:

  1. Напряжение (U), измеряется в Вольтах (V)
  2. Cила тока (I), измеряется в Амперах (А)
  3. Сопротивление (R), измеряется в Омах (Ом)
  4. Мощность (P), измеряется в Ваттах (W)

Закон Ома

То есть мы имеем силу тока, и она зависит от напряжения и сопротивления в цепи, где протекает ток. Также есть мощность, чтобы узнать мощность, нужно перемножить напряжение на силу тока, также и обратно, чтобы узнать ток или напряжение. Можно это вывести из формул (I=U/R, P=UI).

Эта информация пригодится, чтобы решать вступительные задачки на vlab и remont-aud =)

Как измерить напряжение, силу тока и мощность

Как измерить напряжение, силу тока и мощность

Если знать обозначения величин, вы сможете рассчитать мощность зарядок для ноутбуков и компьютерных блоков питания. Просто нужно знать как рассчитывается напряжение, мощность или сила тока для них.

Напряжение в вольтах (V) можно узнать, если разделить мощность в ваттах (W) на силу тока в амперах (A). Если блок питания для ноутбука на 90W и 4.74A, значит 90 / 4.74 = 19V, то есть блок на 19 вольт. Формула для расчёта W/A=V .

Силу тока в амперах (A) можно узнать, если разделить мощность в ваттах (W) на напряжение в вольтах (V). Если блок питания для ноутбука на 65W и 19V, значит 65 / 19 = 3.42A, то есть блок силой тока 3.42 ампера. Формула для расчёта W/V=A .

Мощность в ваттах (W) можно узнать, если умножить напряжение в вольтах (V) на силу тока в амперах (A). Если подать напряжение на плату, где короткое замыкание, и лабораторный блок питания показывает просадку до 1.38V и силу тока 4A, значит 1.38 * 4 = 5.5W, то есть неисправный элемент на плате потребляет сейчас 5.5 ватт. Кстати, чем больше он потребляет, тем сильнее он греется. Ощутимый нагрев начинается где-то с 3-5 ватт. Формула для расчёта V*A=W .

Формула мощности, напряжения и силы тока

Мощность блока питания компьютера

Шим и шим-контроллер

Шим и шим-контроллер

Шим-контроллер на материнской плате ноутбука

Сейчас будет сложнее, сконцентрируйте внимание.

Основными элементами питания материнской платы ноутбука и компьютера управляет шим-контроллер.

Шим-контроллер (контроллер широтно-импульсной модуляции) – это маленькая микросхемка, которая внутри себя быстро и циклично «коротит» и «не коротит» на землю большое напряжение, чтобы сделать из него маленькое. Например, делает из 19V блока питания ноутбука 3V для питания мультиконтроллера или 5V для питания USB-портов.

Питание 3.3V на материнской плате ноутбука

Для этого шим несколько десятков-сотен тысяч раз в секунду замыкает большое напряжение на землю, чтобы на выходе получалось напряжение меньше. Чем дольше замыкание и меньше между ними промежутки, тем меньше напряжение на выходе.

Углубляемся. По сути шим генерирует так называемые импульсы, это всплески электричества после каждого замыкания. Именно такой импульс несёт в себе заряд для 3V и 5V, которые запитывают материнскую плату ноутбука. Эти импульсы возникают не хаотично, а последовательными циклами. Один цикл такого импульса называется такт.

Такт широтно-импульсной модуляции

Один такт – это цикл времени, за который происходит один импульс, когда шим замыкает и не замыкает напряжение один раз. Такие такты измеряются в Герцах (Гц), где 1 такт = 1 Гц.

Если шим-контроллер работает на частоте 30 Гц, это значит, что он 30 раз замыкает и не замыкает входное напряжение за секунду. То есть создаёт 30 цикличных импульсов в секунду. Шим может генерировать частоту в среднем от 30 кГц до 3 ГГц, это десятки тысяч и миллионы тактов в секунду.

Время, на которое шим замыкает входное напряжение называется скважность. Как раз от скважности и будет зависеть наше напряжение на выходе.

Чем дольше шим замыкает на землю входное напряжение, то есть чем больше скважность, тем меньше напряжение на выходе, потому что оно сильнее проседает от такого короткого замыкания. И, соответственно, чем меньше скважность, тем больше напряжение на выходе, потому что шим замыкает входное напряжение совсем небольшую часть такта.

Напряжение широтно-импульсной модуляции

Есть шим-контроллеры, которые сами регулируют напряжение с помощью шим-модуляции, но большинство контроллеров в ноутбуке делают это с помощью полупроводниковых полевых транзисторов, мосфетов, «ключей».

Через управляющий контакт шим-контроллер заставляет замыкаться мощные ключи, которые могут выдержать большую силу тока, чем сам контроллер. Сила тока нужна, чтобы запитать больше устройств от одной линии питания без падения напряжения, измеряется в амперах (А).

Транзистор

Транзистор

Полевой транзистор на материнской плате ноутбука

Транзистор, мосфет, «ключ» — это микросхема, которая выполняют всю физическую, силовую часть работы, чтобы сделать из большого напряжение маленькое.

Контакт транзистора, на который поступает входное напряжение называется исток (source, S), а тот, с которого выходит напряжение — сток (drain, D). Контакт, через который шим-контроллер управляет работой мосфета называется затвор (gate, G). Исток и сток могут дублироваться.

Транзистор напоминает кран, который управляет потоком воды: открыли с помощью лёгкого усилия руки — потекла вода мощной струёй, закрыли — перестала, открыли наполовину — течёт не в полную силу. На деле же у транзистора есть своё сопротивление, которое меняется в зависимости от того, какое напряжение подаётся на его затвор.

С помощью такой штуки можно, например, регулировать обороты вентилятора: мультиконтроллер считывает температуру процессора и отдает команду на затвор транзистора. От подаваемой силы тока зависит выходное напряжение и следовательно обороты вентилятора. Это позволяет избежать постоянно работающего вентилятора на максимальных оборотах.

Зачем нужны силовые транзисторы

Зачем нужны силовые транзисторы

Внутри шим-контроллера стоят условно такие же микротранзисторы. Этими микротранзисторами шим и формирует внутри себя изначальный шим-сигнал, о котором идёт речь. Проблема в том, что силы тока этого шим-сигнала недостаточно, чтобы запитать мощную видеокарту, потому что микротранзисторы внутри шим-контроллера очень маленькие и слабые. Если подавать через них большую силу тока, то они перегреются и выйдут из строя.

Проблему решили так: придумали посылать шим-сигнал с шим-контроллера на управляющий контакт больших полевых транзисторов, чтобы мощные внешние транзисторы дублировали шим-сигнал контроллера, но с большой силой тока. Такая сила тока может запитывать самые мощные элементы материнской платы и компьютера.

Если разбирать полевой транзистор в паре с шим-контроллером, то таких транзистора там обычно два.

Первый подключен одной стороной ко входному напряжению, к такому же, как шим-контроллер, а другой стороной к выходному напряжению. Такой транзистор называется мосфетом верхнего плеча.

Второй транзистор подключен одной стороной к выходному напряжению, а другой стороной к земле. Он называется мосфетом нижнего плеча.

Схема с транзисторами верхнего и нижнего плеча на материнской плате ноутбука

Схема шим-управления транзисторами ноутбука

Итак, пример. Транзистор верхнего плеча одной стороной подключен ко входному напряжению 19V, второй стороной подключен к выходному напряжению, которое он должен сделать, допустим, что это 3V.

Шим-контроллер присылает на затвор этого транзистора шим-сигнал, состоящий из такой длины импульсов, чтобы из 19V на выходе получалось 3V. Транзистор точно повторяет последовательность и ширину импульсов присланного сигнала, и пропускает 19V в сторону будущих 3V так, как это диктует ему шим-контроллер в шим-сигнале. Но замыкать этот сигнал на землю некуда, потому что к истоку подключено 19V, к стоку 3V, а на затвор приходит шим-сигнал с шим-контроллера.

Для этого придумали транзистор нижнего плеча, который одной стороной подключен к будущему напряжению 3V, а другой стороной к земле. Он получает от шим-контроллера прямо противоположный сигнал, чем тот, который направляется на транзистор верхнего плеча. Такой прямо противоположный сигнал называется противофаза. В нём нет импульса в то время, когда в оригинальном сигнале он есть, и наоборот, есть импульс в то время, когда в оригинальном сигнале его нет.

Противофаза шим на схеме материнской платы ноутбука

Это нужно для того, чтобы транзистор нижнего плеча не замыкал сигнал на землю, когда транзистор верхнего плеча пропускает ток с 19V на будущие 3V, и наоборот, когда 19V прошли в сторону будущих 3V, создать скважность, то есть закоротить их на землю по времени настолько, чтобы после сглаживания получалось из приходящих 19V нужные 3V.

Таким образом, транзисторы верхнего и нижнего плеча работают в паре, повторяя шим-модуляцию шим-контроллера, замыкая и размыкая входное напряжение так, чтобы получалось более низкое напряжение на выходе, но с большей силой тока, чем в шим-контроллере.

Дроссель

Дроссель

Дроссель на материнской плате ноутбука

Дроссель это проволока, которая намотана на ферритовый стержень. Феррит это материал, из которого обычно делают магниты, он обладает магнитными свойствами. Иногда, эта проволока с ферритом запрессована в квадратную форму, как на фото выше.

Такая конструкция умеет гасить импульсы шим-сигнала и сглаживать их до нужных значений. Напомню, что шим-сигнал это сочетание импульсов высокого напряжения и скважности, то есть полного отсутствия напряжения.

Когда через дроссель проходит импульс шим-сигнала, дроссель поглощает его, чтобы создать магнитное поле, а когда в такте наступает скважность, то есть 0V, энергия, накопившаяся в магнитном поле, разряжается обратно в цепь, но в выравненном виде. Таким образом получается более низкое напряжение.

Дроссель на схеме материнской платы ноутбука

Это можно сравнить с тем, как если бы вас попросили набрать максимальное количество воздуха в грудь за серию очень коротких прерывистых вдохов. Вы несколько раз кротко и прерывисто вдыхаете, а после этого равномерно выдыхаете весь воздух.

Также и импульсы шим-сигнала напитывают электромагнитное поле дросселя, заряжая его, и в период, когда импульсов нет, равномерно возвращаются током обратно в цепь. Вот так в упрощённой форме изложения из скачкообразного шим-сигнала получается ровный сигнал, но уменьшенного напряжения.

Дроссель сглаживает шим-сигнал шим-контроллера

Шим-контроллер в свою очередь знает, что после силовых ключей стоит дроссель, и специально подаёт импульсы такой длины, чтобы после их сглаживания получалось нужное напряжение, например, 5V или 3V.

Обычно дроссель ставят в пару с конденсаторами, чтобы те тоже немного сгладили остатки всплесков. Во время работы дроссель вырабатывает электромагнитное поле из-за своего сопротивления высоким и низким частотам, из-за этого также он может немного греться.

Главный параметр дросселя – индуктивность, измеряется в генри (Гн). Это параметр сопротивления напряжению, учитывайте его при замене дросселя.

На схеме дроссель обозначается:

  • L*
  • PL*
  • PHASE*
  • CHOKE*

Конденсатор

Конденсатор

Конденсатор на материнской плате ноутбука

Конденсатор это две пластинки с диэлектриком между ними, через него напряжение не проходит.

Конденсатор накапливает в себе заряд и отдаёт его, когда в цепи недостаток. Почти как дроссель, только очень маленький и работающий по другому принципу. Конденсатор больше страхует цепь от перепадов напряжения, чем выполняет основную работу по формированию тока. Он работает как батарейка, чтобы полностью зарядить его требуются доли секунд и разряжаться он может мгновенно.

В импульсных системах конденсатор служит фильтром частот, его ставят для того, чтобы сгладить импульсы или шумы. В отличие от дросселя он делает это не всё время, а наоборот, страхует всю цепь питания в момент мимолётного перенапряжения или просадки.

Например, в микромомент, когда напряжение кратковременно начинает проседать, конденсатор разряжает свою ёмкость в цепь, чтобы повысить и стабилизировать напряжение в цепи. В следующий раз конденсатор поглощает импульс и заряжается, когда на линии питания скачок напряжения.

Конденсатор на схеме материнской платы ноутбука

Ёмкость заряда, которую конденсатор может накапливать, измеряется в фарадах. Чем больше ёмкость, тем больший ток конденсатор выдаст при разрядке. В основном конденсаторы встречаются с ёмкостями в микрофарадах (uF), нанофарадах (nF) и пикофарадах (pF).

Обычно в ноутбуках выходят из строя как раз такие керамические конденсаторы, их нужно менять на точно такие же по фарадам. Можно ставить конденсатор больше по напряжению, но он должен быть такой же ёмкости. Нельзя ставить конденсатор другой ёмкости или такой же ёмкости, но с меньшим напряжением

В цепи 19 вольт стоят конденсаторы 30 вольт, потому что сам блок питания ноутбука выдаёт не всегда ровно 19 вольт. Блоки питания также импульсные, и эти импульсы могут достигать в короткий момент тех же самых 30 вольт.

Так как конденсатор 30 вольт, то для него не помеха сгладить такой импульс, но если поставить туда конденсатор в 20 вольт, то он будет сначала сильно греться, а потом и вовсе выйдет из строя. Сломанный конденсатор может вывести из строя блок питания и компоненты на материнской плате.

Если же поставить конденсатор с запасом по напряжению, но меньший по ёмкости, то он будет хуже справляться со сглаживанием импульсов, а если поставить большую ёмкость, то конденсатор наоборот может их создавать, потому что напряжение может просаживаться из-за того, что импульсы шим-контроллера не рассчитаны на такую ёмкость в цепи. Такой конденсатор будет разряжаться с более сильным током, что может повредить цепь питания.

Каждый конденсатор стоит в цепи не просто так, проектировщики на заводах ставят их исходя из возможностей микросхем и потребителей питания. Конденсаторы с меньшей ёмкостью гасят высокочастотные импульсы, потому что быстро копят и отдают заряд, а конденсаторы с большей ёмкостью хорошо справляются с более широкими импульсами. Поэтому частая проблема выбитых конденсаторов — некачественное зарядное устройство с большими, предварительно не сглаженными импульсами.

Практически: конденсатор 6.3V 440uF можно поменять на 10V 440uF, но нельзя менять на 6.3V 220uF или 3.3V 440uF.

На схеме конденсатор обозначается:

  • C*
  • PC*

Резистор

Резистор

Резистор на материнской плате ноутбука

Резистор это элемент в электрической цепи, который сопротивляется току и ограничивает его.

Резистор можно сравнить с воронкой с узким горлышком. Если запустить в воронку поток воды любого объёма, на выходе всё равно будет небольшая струйка, которая совпадает по диаметру с горлышком воронки.

На практике чтобы так работало, сопротивление резистора, которое измеряется в Омах, подбирается так, чтобы получить ограничение нужного размера. Чем больше сопротивление резистора, тем сильнее ограничивается ток. Это важно знать в нашей профессии, потому что цифровая техника очень чувствительна к току и неправильно подобранный резистор может вывести технику из строя.

Резисторы часто используют для подтяжки напряжения к логическому сигналу (Pull-Up) или подтяжки логического сигнала к земле (Pull-Down).

Разберём на примере. Есть сигнал PWRBTN#, это сигнал кнопки включения. Условно, PWRBTN# существует как часть мультиконтроллера и находится внутри корпуса мультиконтроллера, его внутренней прошивки или внешней. Изначально он не имеет ни своей земли, ни своего напряжения, ни к чему не подключен. Он существует «в вакууме», как нога контроллера, как сенсор, который никак не задействован в системе.

Когда инженеры проектируют материнскую плату, они подводят 3V через резистор к ноге мультиконтроллера, в которой находится сигнал PWRBTN# и закладывают в прошивку мультиконтроллера алгоритмы поведения на этом сигнале.

Мультиконтроллер учат понимать, что на этой ноге по умолчанию 3V, а бывает ничего нет, потому что человек нажимает на кнопку включения компьютера или ноутбука, и при нажатии кнопка на корпусе компьютера механически замыкает подведённый к ней PWRBTN# на землю.

Когда ничего нет, это значит, что нажата кнопка включения. Мультконтроллер распознаёт это как полное отсутствие сигнала — логический ноль, то есть 0V, отсутствие напряжения. Либо если кнопка не нажата, то как полное его присутствие — логическая единица, то есть 3V.

С помощью такого знания мультиконтроллер может давать команду включать компьютер или не включать. Если состояние 0, то включить или выключить компьютер, если состояние 1, то ничего не делать.

Резистор на схеме материнской платы ноутбука

Так реализована логика работы контроллеров на материнской плате. Но при чём тут резисторы? Если бы мощность силовых 3V не ограничивалась бы резистором, то вся сила тока цепи могла бы вывести из строя чувствительные логические выводы мультиконтроллера, а при замыкании кнопки она замыкала напряжение прямо на землю.

В месте замыкания сила тока могла бы вырасти до десятков ампер, а такой цели нет. Нужно всего лишь, чтобы мультиконтроллер понял, когда напряжение есть, а когда его нет. Для этого нам не нужна вся мощь силовой линии, нам нужен небольшой ток просто для отработки логики 0 и 1, поэтому придумали ставить резисторы, чтобы создавать контролируемые замыкания без лишнего нагрева и последствий.

На схеме резистор обозначается:

  • R*
  • PR*
  • RT*

Диод на материнской плате ноутбука

Всё, что нужно знать, так это то, что диод проводит ток в одну сторону и не проводит в другую. Диоды часто ставят в цепь для защиты от переполюсовки.

Человек втыкает мышку в USB-порт, она не лезет, он её пихает, USB-порт ломается. Центральный адресный сигнал USB замыкается на 5V. Если там нет диодной защиты, 5V попадает на USB-контроллер или ещё хуже, попадает в чипсет и выводит из строя материнскую плату. Если на адресном сигнале USB стоит диод, который пропускает адресный сигнал в сторону мышки, и не пропускает ток обратно в материнскую плату, то когда человек сломает USB-порт, компьютер не выйдет из строя.

Диод проверяется прозвонкой, в одну сторону он будет звониться, в другую нет. Если же диод звонится в обе стороны, либо не звонится вообще, то нужно его поменять.

На схеме диод обозначается:

  • D*
  • PD*

Диод на материнской плате ноутбука

Чарджер – это микросхема на плате, которая контролирует поступающий заряд на батарею и определяет, когда ноутбук должен работать от неё. Заодно он служит контроллером и регулятором входного напряжения. Как только вы вставляете зарядку или ЛБП в разъём, то напряжение сразу же поступает на входные ключи, они должны открыться, чтобы напряжение прошло дальше, но, пока чарджер не запитан, никто их не откроет.

Нужно, чтобы напряжение с разъёма через диоды и дроссели пришло в чарджер на сигнал VCC или VIN, теперь он запитан от напряжения 19в.

Если всё в порядке, то на сигнале ACDET появится 2.6 вольт. Оно формируется из резисторного делителя от 19 вольт.

Диод на материнской плате ноутбука

Далее идёт проверка сопротивления на токоизмерительном резисторе, после проверки чарджер определяет можно ли открывать входные ключи и включает: на затворы двух входных ключей поступает, через сигнал ACDRV, 19-26 вольт если ключи N-канальные, а если ключи P-канальные, то наоборот напряжение меньше 19 вольт или исчезает.

В это же время идёт опрос аккумулятора чарджером и мультиконтроллером через сигналы SCL и SDA и появляется сигнал ACIN (ACOK), это сигнал 3.3в, который вырабатывается чарджером, он говорит мультиконтроллеру о том, что подключена зарядка и сейчас питание идёт от неё. Без этого сигнала питание на плату будет идти от аккумулятора. Кстати, иногда, если компьютер не может определить акб, то виновник тому может быть и чаржер, и мультиконтроллер, сначала проверьте с помощью осциллографа идёт ли опрос данных на этих контактах.

Диод на материнской плате ноутбука

Сначала подкиньте заведомо рабочий АКБ или аналог с подходящими пинами (не всегда работает), можете посмотреть как работает такая схема на рабочем ноутбуке, чтобы понять, если вы в первый раз это делаете.

Иногда не работать аккумулятор может из-за ключей, которые дают заряд АКБ, нужно их прозвонить относительно затвор-исток-сток друг с другом, может быть они пробиты, иногда такое может быть и из-за пробитых входных ключей.

Часто придётся иметь дело с чарджером фирмы Texas Instruments, с маркировкой BQ24***. Некоторые из них взаимозаменяемы, нужно смотреть на распиновку и каналы ключей, так же стоит посмотреть на форуме кто это уже делал. Чарджер иногда может выдавать какое-то LDO напряжение, оно может быть 3.3/5/6 вольт. На схеме такая микросхема отмечается, как и любая другая: U*, PU*.

Диод на материнской плате ноутбука

После этого появляются слаботочные напряжения 3.3в и 5в (vreg3 и vreg5). Эти напряжения линейны, т.е. в зависимости от потребителя напряжение может «просесть», так как не основано на ШИМ. От такого напряжения запитываются только слаботочные потребители, такие как мультиконтроллер или другие шим-контроллеры.

После того, как появились LDO и мультиконтроллер запитался напряжением 3.3в LDO, он отправляет сигнал на включение силовых питаний дежурных напряжений (EN1 и EN2), основанных на принципе ШИМ. На этой схеме один EN реализованный через резисторный делитель из 19в. Выглядит дежурка на плате как одна маленькая микросхемка, иногда и две, под отдельные напряжения 3 и 5 вольт.

Рядом с дежуркой стоят минимум 4 полевых транзистора и 2 дросселя, иногда не одинакового размера. В редких случаях роль полевиков берет на себя сама дежурка, разве что, когда 3 и 5 вольт стоят отдельными шимками. Иногда шим стоит на одной стороне платы, а дроссели на другой.

Сопротивление на силовых 3В не меньше 6 Ком, на 5В

>13 Ком. Иногда сопротивление намного меньше этих, в таких случаях поможет опыт или форум, главное, чтобы не было короткого замыкания. Смотрите даташит, если не знаете какой сигнал идёт сразу, а какой нет.

Чаще придётся работать с дежурками фирмы Texas Instruments (TPS*) и Richtek (RT*). Когда сама дежурка выйдет из строя или будет некорректно работать, нужно будет сначала проверить сопротивления на линиях LDO

> 100 Ком, на силовых линиях и на входе питания шимки, потом снять дежурку и сделать те же замеры заново. Если ничего не изменилось, то дело не в контроллере, если наблюдаете изменения (например повысилось сопротивление), то ставьте новую.

Подробнее о замене дежурок на аналог читайте в следующей статье.
На плате дежурка обозначается как рядовой контроллер: U*, PU*

Диод на материнской плате ноутбука

В простонародье мультик или мульт. Главный контроллер, с помощью которого определяется последовательность сигналов включения на плате. У мультиконтроллера 128 пинов, по 32 с каждой стороны. Паять его можно разными способами: разбавить паяльником бессвинцовый припой сплавом розе и потом снять, либо разбавить его свинцом. В том и том случаи такой сплав будет легче сниматься.

Снимать мульт надо феном, с розе он быстро снимется, со свинцом посложнее. Не стоит выпаивать мультиконтроллер с припоем с завода, так сложнее снимается и когда будете ставить новый мульт, то всё равно будете лудить свинцом, а из-за перегрева с корпуса начнёт слезать корпусная часть и он начнёт «трескать».

Чтобы разбавить заводской припой, нанесите на жало небольшое количество припоя, с которым хотите смешать. Положите флюс на ножки мульта и возите по ним жалом туда-сюда, только нельзя при этом сильно нажимать на пины, они хоть и крепко стоят, но бывали случаи, когда после такого они выгибались в разные стороны и повреждались. Для облегчения залуживания можно предварительно нагреть мультиконтроллер и эту область феном так, чтобы тепло с жала не уходило на разогрев самого мульта.

Чтобы поставить мультик с донора, аккуратно снимите его. Если погнулись ножки, то сначала ровно поставьте мультик на площадку так, чтобы не согнутые ножки стояли на своих местах и запаяйте его феном, потом возьмите насадку с тонким жалом, встаньте жалом на кривой пин, разогрейте мульт и выпрямите самим паяльником, прижмите к площадке тонким пинцетом или скальпелем. Главное не перестараться и не «довыпрямлять» пин до такой степени, что он отвалится.

Обычно, когда требуется принципиальная схема включения или просто распиновка мульта, а схемы на плату нет, но известен мультиконтроллер, то поищите схему от другого ноутбука, главное, чтобы совпадал именно этот контроллер. Так же при замене посмотрите распиновку мультика, у которого в названии меняется одна цифра или буква. Если всё совпадает, то пробуйте заменить, возможно мультиконтроллер заработает.

Подробнее о взаимозаменяемости мультиконтроллеров найдёте на форумах, некоторые уже испытали тот или иной опыт. Ниже будет таблица с маленьким количеством уже готовых решений, но помните, что после такой замены мульта, нужно обязательно всё проверить по чек листу, иногда такие замены не проходят бесследно.

Обратите внимание, что у мультов фирмы ITE ревизия в виде букв в названии, и последняя из трёх ни на что не влияет. При замене ставьте мультиконтроллер либо такой же буквы, либо старшей по алфавиту, например мульт В меняйте на С, но не с А. Всегда смотрите на форумах, может кто-то так делал и у него получилось. Но таким же испытателем можете быть и вы и потом поделиться опытом, в противном случае плата будет вести себя самым непредсказуемым образом.

Контроллеры так же прошиваются, как и биос, изучите для этого даташит к мульту. COREX для этого использует программатор Вертьянова. Подключите его и следуйте инструкции в приложенном файле. Сначала считайте старый дамп, нажав READ, а потом выберите прошивку на компьютере и нажмите WRITE, но иногда мульт шить не нужно, потому что прошивка мульта лежит в биосе.

Последовательность сигналов и их «сложность» на плате зависит от мультиконтроллера. Подробнее о последовательности сигналов и замене мультов читайте в следующих статьях.

На плате мультиконтроллер обозначается как любой контроллер: U*, PU*.

Сколько нужно фаз для мощного процессора и как определить их количество у VRM материнской платы

Сколько нужно фаз для мощного процессора и как определить их количество у VRM материнской платы

Собирая компьютер, мы тщательно изучаем характеристики процессора, оперативной памяти и видеокарты. А материнская плата частенько покупается «на сдачу». Между тем, ценность производительных комплектующих утрачивается, если их неправильно выбрать. Основной вопрос — совместимость с процессором. Давайте разберемся, как определить количество фаз для питания и сколько нужно для конкретного ЦП. Узнаем, на какие хитрости идут производители материнских плат, чтобы сэкономить.

Что такое VRM

VRM — самый энергетически напряженный участок материнской платы. Он отвечает за формирование питания процессора, а современные ЦП очень прожорливы. Например, топовый Intel Core i9-11900K потребляет до 250 Вт. При низком напряжении (1 В с «копейками») потребляемый ток составит внушительные 200 А. Значение еще и меняется в зависимости от нагрузки — такое питание может формировать только сложная и технологичная электронная схема.

Voltage Regulator Module или модуль регулятора напряжения преобразует 12 В блока питания в низковольтное стабилизированное напряжение питания процессора. Это многоканальный импульсный преобразователь, который состоит из ШИМ-контроллера, драйверов, мосфетов и сглаживающего фильтра.

Зона VRM на материнской плате

Количество фаз питания

Многоканальность VRM продиктована тем, что мощностные возможности одной фазы ограничены. Их недостаточно для питания даже самого слабого процессора. Поэтому производителям плат приходится наращивать число фаз, тем самым увеличивая суммарный ток и результирующую мощность.

Стандартная фаза питания состоит из драйвера, мосфетов нижнего и верхнего плеча и сглаживающего LC-фильтра — конденсатора и дросселя.

Блок-схема фазы питания VRM

На материнской плате эти элементы размещены как можно ближе к сокету — разъему для процессора. Ведь чем короче токопроводящие дорожки, тем меньше их сопротивление и тепловые потери. А при токах в районе 200 А сопротивление даже в 0,001 Ом вызовет уменьшение напряжения на процессоре на недопустимые 0,2 В.

Дроссели — это кубы, возвышающиеся над платой. Внутри корпуса у них несколько витков медной проволоки, которые залиты компаундом. Конденсаторы представляют собой цилиндры схожей высоты. Мосфеты — прямоугольные керамические микросхемы. Драйверы находятся рядом с ними.

В последние годы производители материнских плат все чаще применяют сборки DrMOS. В них мосфеты и драйверы компактно размещены в едином корпусе.

Казалось бы, узнать число фаз питания VRM очень просто. Достаточно посчитать количество самых заметных элементов — дросселей. Сколько дросселей, столько и фаз. Но это справедливо не для всех материнских плат. Дело в том, что производители зачастую используют не совсем «честные» каналы питания.

Цикл одной фазы не должен совпадать с циклами других фаз — они работают поочередно. Только в этом случае их можно назвать полноценными. Такая поочередность создает высокую частоту пульсаций на выходе VRM. Ее легче сгладить, чем низкую частоту пульсаций, которую создавали бы фазы питания, работающие одновременно.

Блок-схема трехфазного VRM

Иногда применяют усиленные фазы. В этом случае каждые две цепи питания соединяются параллельно, затем они подключаются к выходу контроллера. Такая пара цепей работает одновременно, поэтому они не являются фазами друг для друга:

Трехфазный VRM с усиленными фазами

При подсчете по дросселям (или другим элементам) для этой схемы получим шесть «ошибочных» фаз питания. А фактически имеем три усиленных фазы. Такую схему часто применяют, если используются радиокомпоненты невысокого качества.

Некоторые производители применяют в материнских платах удвоители фаз. Такие даблеры распределяют поступающие импульсы поочередно на каждую фазу питания. Каналы тоже работают поочередно.

Но и в этом случае есть подвох. Даблер, разделяя импульсы по фазам, вдвое уменьшает частоту следования. Это приводит к уменьшению частоты пульсаций на выходе VRM и усложнению их сглаживания. Потребуются конденсаторы большей емкости и дроссели с другими параметрами.

Подробнее о различных топологиях материнских плат читайте в специализированной статье.

4 + 2 не равно 6

Фазы питания VRM материнских плат обозначают по схеме A + B, где A — число фаз питания ядер процессора, а B — число фаз питания встроенного видеоядра и контроллера памяти. Таким образом, VRM делится на два независимых канала.

Производители иногда лукавят, указывая лишь общее количество фаз. В примере выше — шесть. Другой пример. В спецификации вроде бы все честно: 14 + 2 фазы.

Но в схеме питания используется восьмиканальный ШИМ-контроллер. Семь каналов через удвоители образуют 14 фаз питания для процессора, а один канал с помощью того же даблера превращается в две фазы питания видеоядра и контроллера памяти. Правильнее было бы обозначить так: (7 × 2) + (1 × 2).

Мощный процессор — слабая материнская плата

Допустим, вы не прочли эту статью и купили слабую материнку к топовому процессору. Какими последствиями чревата такая компоновка?

В бюджетном сегменте экономят на всем: как на компонентах самого VRM, так и схемах защиты от перегрева. Если последние работают корректно, при перегреве электронных ключей процессор просто перейдет в режим троттлинга. Материнская плата уменьшит его тактовые частоты и напряжение питания. Соответственно, снизится и тепловыделение.

Если схема защиты вдруг не сработает, мосфеты сильно нагреются и начнут «пробиваться», образуя короткое замыкание между выводами. Повезет, если первым «пробьется» ключ нижнего плеча — он просто закоротит питание процессора на корпус.

Если же в пролете окажется верхнее плечо, то все напряжение питания (12 В) через дроссель пойдет на процессор. Он при таком исходе гарантированно выйдет из строя.

Сколько нужно фаз?

Так сколько же фаз питания должен иметь VRM, чтобы полноценно запитать тот или иной процессор? Все зависит от максимального тока, который может обеспечить каждый канал. В первую очередь смотрите на мосфеты или DrMOS.

Качественные электронные ключи в среднем дают 45 А. Для мосфетов низкого качества максимальный ток каждой из фаз будет в пределах 25 А. Затем нужно умножить это значение на количество фаз — так мы получим максимальный ток всего VRM. Сразу станет понятно, сможет ли материнская плата полноценно запитать процессор.

Например, топовый Intel Core i9-12900KS способен потреблять до 291 Вт.

При стандартном напряжении питания процессора 1,4 В ток потребления составит 208 А (291 Вт / 1,4В = 208 А). Для перестраховки предположим, что компоненты фаз питания VRM — не самые лучшие, и обеспечивают ток 25 А. Тогда для 12900KS нужно хотя бы 10 полноценных фаз.

Для среднебюджетного процессора Intel Core i5-12600K с максимальной потребляемой мощностью 150 Вт ток потребления будет 107 А. Понадобится минимум шесть фаз.

Ищите информацию о конкретных мосфетах в сети. Иногда эти данные проскакивают в обзорах. Так, в материнской плате ASRock Z690 Pro RS для питания ядер процессора используются DrMOS SiC654 фирмы Vishay Siliconix c максимальным током в 50 А. У этой платы шесть усиленных фаз, каждая имеет по две цепи питания. То есть, вышеуказанные 45 А на фазу она обеспечит.

Нужно понимать, что ток фазы питания не будет соответствовать величине максимального тока мосфетов. Они работают в импульсном режиме, а нам нужна величина непрерывного тока самой фазы. Но зависимость прямая, чем больше максимальный ток электронных ключей — тем больше ток фаз питания.

В экстремальной плате Z690 AORUS TACHYON для питания ядер используются 15 фаз на сборках Renesas RAA220105 с максимальным током в 105 А. В данном случае такие значения скорее для надежности. Сами мосфеты используются в щадящем режиме — то есть, с гораздо меньшими импульсными токами. Даже если взять условную цифру в 45 А, получаем максимальный ток 675 А. Плата отлично подойдет для разгона.

Шпаргалка

Для удобства систематизируем данные. Если собираете систему на Intel, ориентируйтесь на эту таблицу:

Для AMD используйте данные ниже.

Обращайте внимание на наличие радиаторов для охлаждения VRM. Их отсутствие прямо говорит о том, что материнская плата не предназначена для работы с производительными процессорами.

Как проверить мультиконтроллер на материнской плате? — О компьютерах, ноутбуках и смартфонах для чайников

Техника

Работа цепей питания la6552p. первоначальный запуск и появление напряжений

Для работы ноутбука необходимо, чтобы открылись входные полевые транзисторы PQ14 PQ15. Их открывает транзистор PQ68B. Его же открывает высокий уровень сигнала PACIN. На транзисторах PQ68A, PQ21, PQ19 собрана блокировка — низкий уровень на затворе PQ68A приводит к надежному закрытию PQ14, PQ15. Также это может произойти, если мультиконтроллер подымет сигнал ACOFF.

Теперь посмотрим, откуда берется PACIN. По схеме мы видим, что из 6251VDD через резистор PR286. В добавок к этому, PQ67 должен быть закрыт, для чего чарджер должен продетектировать наличие внешнего питания (вывод ACSET) и опустить сигнал ACPRN.

Что такое мультиконтроллер – что он делает и как связан с индикатором

Мультиконтроллер представляет собой специальный чип, часто оснащенный собственной прошивкой и памятью, который управляет всеми процессами, связанными с питанием устройства. Ведь каждому компоненту ноутбука необходимо специфическое питание, которое может отличаться по мощности от основного.

Все индикаторы, в том числе индикатор питания, могут быть связаны с мультиконтроллером напрямую или через дополнительные схемы. Все описанное выше дает понять, что, если какой-либо из элементов питания, а тем более все, работает, проблема скорее всего заключена в самом управляющем чипе. Установить этот факт бывает крайне затруднительно, не говоря о том, чтобы устранить.

Мультиконтроллер – это очень сложный компонент, обслуживание и ремонт которого требует обращения к квалифицированным специалистам.

Диагностика запуска (или отсутствия старта) ноутбука

Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.

Диагностика и неисправности мультиконтроллера в ноутбуке

В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.

Диагностика и ремонт цепей питания ноутбуков acer

Ремонт материнских плат на платформе Compal, с неисправностью «не заряжает» АКБ или «не включается», особенно после залития жидкостью, зачастую вызывает у мастеров трудности. Рассмотрим типовую схему питания и заряда, применяемую в ноутбуках Acer, на примере платформы LA-6552p.

Будем рассматривать параллельно типовую схему включения чарджера ISL6251a и те куски схемы ноутбука, которые связаны с запуском и зарядом аккумулятора.

Эта статья подразумевает, что вы знакомы с работой микросхемы чарджера и мультиконтроллера. Если это не так, то сначала изучите другую нашу статью по электрическим цепям чарджера и питания и функционирования мультиконтроллера при запуске ноутбука.

Схема включения микросхемы заряда ISL6251:

В этой референской схеме:

  • вход DCIN — вход питания от адаптера питания 19 В
  • вход ACSET — вход обнаружения нормального уровня напряжения питания от сети (должно быть больше 1.26 V для включения, через резисторный делитель)
  • выход ACPRN# — сигнал на мультиконтроллер на начало работы
  • вход EN — сигнал от мультиконтроллера на разрешение заряда аккумулятора
  • CELLS — сигнал от мультиконтроллера, указывающий, какое напряжение заряда аккумулятора должно быть на выходе чарджера
  • VDD и VDDP — напряжение питания самого чарджера, которое он сам генерирует из входного напряжения сети

Другие варианты неисправностей

Помимо проблем с мультиконтроллером часто встречаются и другие варианты неисправностей. Рассмотрим случаи короткого замыкания и неисправной кнопки включения.

Задачи мультиконтроллера

Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами. Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп.

Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера. Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука.

На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).

В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.

Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения. Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать).

Запуск шим rt8205, дежурные напряжения 3 и 5

На данной платформе генерация дежурных напряжений происходит только при питании от адаптера. Сигналы держаного напряжения здесь называются 3ALWP и 5ALWP, формируемых микросхемой RT8205.

Рассмотрим работу ноутбука без аккумулятора, поскольку при ремонте материнской платы обычно мастер так и поступает, запитывая плату от лабораторного блока питания. После подключения адаптера появляется VIN и PreCHG. Через резистор PR128 оно поступает на базу PQ34, открывая его, а он, в свою очередь, открывает PQ31, подавая PreCHG на B .

Когда напряжение B достигнет достаточного для запуска RT8205, появляются напряжения 3VLP и VL. А дальше, если запуск не заблокирован транзисторами PQ63A, PQ63B, напряжения 3ALWP и 5ALWP Чтобы произошел запуск, нужно, чтобы PQ64 был открыт. Для этого должно быть напряжение VS, а ACPRN в низком уровне. VS берется из VIN через резисторы PR10 PR11.

Многие платформы Compal имеют схожие схемы. В некоторых могут применяться операционные усилители для формирования ACSET и других сигналов. В этих узлах для формирования опорного напряжения может использоваться напряжение 3V RTC, такие платы не запускаются, если батарейка часов разряжена.

В статьи использованы материалы remnout.by — ремонт ноутбуков в Минске.

(Посещений: 7 168, из них сегодня: 2)

Короткое замыкание

Если в цепи в каком-либо из компонентов произошло короткое замыкание, вся цепь перестает работать. Местом может быть шина, компонент или микросхема. Причин, почему возникает короткое замыкание, множество: от неправильной сборки аппарата до элементарного попадания воды.

Ремонт при коротком замыкании заключается в выявлении поврежденных компонентов и их замене на новые.

Неисправности мультиконтроллеров и их симптомы

Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.

К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).

Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера. Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео. Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).

Неисправность кнопки включения

Самой распространенной проблемой всех кнопок включения считается их окисление или засорение. Между контактами скапливаются инородные массы, которые препятствуют замыканию цепи. Ремонт можно провести самостоятельно. Нужно почистить контакт и цепь снова начнет функционировать.

Последовательность включения ноутбука

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.

Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора. Из данных BIOS определяется его тактовая частота, множитель, настройки.

Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др., а после проверка и тестирование дополнительных устройств.

После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:

  1. Основной BIOS и EC-BIOS должны быть рабочие.
  2. Мультиконтроллер запитан, работает его кварц и мульт вычитывает содержимое BIOS
  3. ACIN = 3.3 V
  4. LID_SW# = 3.3V (крышка ноутбука открыта)
  5. EC_RST# = 3.3V (мульт снимает RESET с южного моста)
  6. Южный мост снимает сигналы PM_SLP_S3# и SLP_S5#, то есть, на них устанавливается 3.3V
  7. При нажатии кнопки включения сигнал ON/OFTN# падает до нуля и этот же сигнал транслируется в PBTN_OUT#

Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера. В первых двух случаях восстановить прошивку не представляется сложным.

Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell. Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы. Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:

  • ALL_SYSTEM_PWRGD (68 мульт)
  • SUS_PWRGD (67 мульт)
  • VRM_PWRGD (1 ISL6262)Входящие сигналы указывают на выработку сигнала PowerGood и наличие питания Suspend режима и питания на VRM регуляторе ISL6262. Это значит, мост и процессор запитаны.
  • Сигналы H_CPURST#_XDP и H_PWRGD_XDP разрешают работу процессора.
  • PWR_SW# — сигнал с кнопки включения
  • CPU_VRON — включения питания на CPU
  • PM_RSMRST# — снимает RESET с моста
  • PM_SUSB# — хаб PCH должен выдать сигналы PM_SUSC# и PM_SUSB# идущие на мульт, а мульт в ответ выдать сигналы SUSC_EC# и SUSB_EC#
  • PM_PWROK — сигнал на хаб, что питание в норме
  • PM_CLKRUN# — сигнал на запуск тактирования
  • PM_PWRBTN# — сигнал на включение южного моста
  • VSUS_ON — сигнал включения дежурного питания на силовых ключах
  • EC_CLK_EN (CLK_EN#) — разрешение тактирования на южный мост

Питание на IT85xx мульты поступает следующее: 3VA_EC, 3VPLL, 3VACC, без них микросхема не запустится.

Последовательность диагностики мультиконтроллера

Рассмотрим схему последовательности включения ноутбука:

Процедура включения материнской платы

Для диагностики в целом, вам нужно рассмотреть две ситуации:

1. Питание не появляется, светодиод питания не горит.

Ищем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений 3VSUS и т.п. Через форфмирователи 3 V питание поступает на мультик — проверяем это питание на входе.

2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.

Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов. Для быстрой диагностики прогреваем микросхемы чипсета по-очереди.

После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост. Если были артефакты на встроенном видео, то виноват северный мост.

Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.

Вот обобщенный порядок следования сигналов при запуске EC:

CLK_PWRGD с юга приходит на тактовый генератор-> сигнал PWROK на юг-> юг отдает процу сигнал H_PWRGD (HardWare PWRGD, все питания в порядке, следующий этап инициализации)-> юг снимает ресет с севера PLT_RST#-> юг снимает ресет с PCI шины PCI_RST#-> север снимает ресет с процессора HCPU_RST#

Вот алгоритм проверки популярного мульта KB3926, его можно применить и к аналогам:

  1. Проверить питание мульта 3,3v (9 нога)
  2. Проверить генерацию кварца (123 нога)
  3. Проверить сигнал с кн.вкл. ON/OFF 3,3v/0,5v (32 нога)
  4. Проверить АCCOF 0V (27 нога)
  5. Проверить ACIN 3.1V (127 нога)
  6. Проверить PBTN_OUT 0v/3,3v (117 нога)
  7. Проверить сигнал 0v/3,3v (14 нога)
  8. Проверить RSMRST 0v/3,3v (100 нога)
  9. Проверить PWROK 0v/3,3v (104 нога)
  10. Проверить SYSON 0v/3,3v (95 нога)
  11. Проверить VRON 0v/3,3v (121 нога)
  12. Проверить обмен мульта с югом 3,3v (77,78 нога)
  13. Проверить обмен мульта с югом 0v/3,3v (79,80 нога)
  14. Проверить генерацию PCICLK (12 нога)
  15. Проверить сигнал 0v/3,3v (1,2,3 нога)
  16. Проверить TP_CLK 0v/0,1v (87 нога)
  17. Проверить TP_DATA 0v/5v (88 нога)
  18. Проверить SUSP 0v/3,3v (116 нога)
  19. Проверить VGA_ON 0v/3,3v (108 нога)

Вот дополнительные контрольные значения напряжения:

DPWROK_R — 3,3VPM_RSMRST#PCH — 3,3VPM_RSMRST#- 3,3VSUS_PWRGD — 3,3V5VSUS_PWRGD — 3,3VME_SUSPWRDNACK_R — 3.3V

Как видно из алгоритма, в самом начале EC контроллер должен вычитать прошивку из Flash памяти через SPI интерфейс. Если этого не происходит, то дальше никаких сигналов питания ШИМов не формируется. Часто, в случае серии IT85xx и аналогичных это отдельня 8-контактная микросхема (напримерб SST25VF080B) с питанием по линии 3VA_SPI.

Программатор от Сергея Вертьянова

Для справки: схема плат Asus K40AA K50AA и схема нетбуков ASUS 1015P.

Популярность: 80%

Работа чарджера isl6251 и заряд аккумулятора

Питание 19в поступает на 24-й вывод микросхемы чарджера DCIN с разъема питания через диод PD16 и резистор PR281 (входное напряжение схемы обозначено VIN). Если вы заменили микросхему, проверьте цел ли резистор. Внутри микросхемы на выводе 1 VDD формируется напряжение питания 5в которое далее через PR86 поступает на 15 вывод VDDP и запитывает остальные узлы микросхемы. Проверяем присутствие 5в на 15 выводе.

На выводе VREF должно быть генерируемое чарджером опорное напряжение 2.39v

Вход ACSET — чарджер детектирует напряжение питания 19в, которое делитель на PR280 и PR282 понижает в 14 раз. Для этого напряжение на ACSET должно превысить 1.26в, что соответствует 18.0в на входе. Обнаружив нормальное питание, чарджер опускает в низкий уровень ACPRN — подаёт сигнал мультиконтроллеру.

Мультиконтроллер обменивается данными с контроллером аккумулятора и при необходимости зарядки выставляет высокий уровень на выводе EN чарджера, разрешая ему заряд.

На выводе CELLS мультиконтроллер устанавливает напряжение, зависящее от количества банок в аккумуляторе, указывая тем самым чарджеру, какое напряжение подавать на аккумулятор. Чарджер вырабатывает напряжение BATT на заряд батареи (типовое 12.6 В).

Выводы CSIN CSIP подключены к датчику тока источника питания — резистору PR61, а выводы CSON CSOP — источнику тока заряда. При превышении тока чарджер выключает зарядку аккумулятора.

Таким образом, для заряда аккумулятора необходимо, чтобы чарджер был запитан (DCIN = 19в, VDD и VDDP = 5в, VREF = 2.39v), чтобы он продетектировал питание (ACSET >1.26v) мультиконтроллер выдал ему сигнал EN.

Должна запуститься генерация на транзисторах PQ55 PQ57, токи на PR61 и PR78 не должны превысить предельно допустимых. Здесь следует обратить внимание, что кроме самих резисторов PR61 PR78 могут подгореть также и PR74 PR76 PR72 PR73, из-за чего чарджер может неправильно измерять токи.

Разновидности мультиконтроллеров

Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.

Сильно отличаются только последние, хотя бы методом пайки, они BGA.

На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

В последнее время подрабатывал на дому выполнением ремонтов электроники. Ремонтируя как технику знакомых, так и выкупленную на местном форуме (Авито и Юле), с целью реализации. Занимался всем на что хватало опыта и знаний: от бытовой аудио-видео, до компьютерной техники.

Недавно решил перебрать материнские платы, которых скопилось приличное количество, ремонт которых не был выполнен сходу и которые были отложены до лучших времен. Насчитал из них четыре штуки и все с аналогичными поломками – мосфетами с коротким замыканием или иначе говоря, пробитыми транзисторами в цепях питания процессора. Это те самые всем известные квадратики, полевые транзисторы в планарном исполнении SMD, находящиеся обычно на плате слева от процессора.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Мосфеты цепи питания процессора

В связи с тем, что процессор потребляет довольно большое количество энергии, которую рассеивает в виде тепла в окружающее пространство, тем самым нагревая материнскую плату и установленные на ней детали, ему требуется хорошее охлаждение. Для процессоров 2 ядра тепловой пакет обычно составляет 65-89 ватт, для 4 ядерных – 95 ватт и выше.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Дросселя питания процессора

Для того чтобы электролитические конденсаторы установленные по цепям питания процессора и находящиеся рядом с радиатором процессора (кулером) не вздулись от перегрева, необходимо эффективно отводить выделяемое при работе процессора тепло, иначе говоря требуется эффективная система охлаждения. Но вернемся к сути ремонта.

Мосфет транзистор фото

Мосфет транзистор фото

Если система охлаждения не справляется, то помимо конденсаторов греются еще и установленные на плате мосфеты, транзисторы многофазной системы питания процессора. Количество фаз питания составляет от трех на бюджетных материнских платах, до 4-5 и более в более дорогих, топовых игровых материнках.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Что происходит, когда один из этих квадратиков, полевых транзисторов мосфетов, оказывается пробит? Многие пользователи ПК встречались наверное с подобной поломкой: нажимаешь кнопку включения на корпусе системного блока, кулера дергаются, пытаются начать вращаться и останавливаются, а при повторной попытке включить все повторяется снова.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Провод 4 пин питания процессора

Что это означает? Что в цепях питания процессора где-то короткое замыкание, а скорее всего пробит один из этих самых мосфетов. Как самым простым способом попробовать определить один из вариантов, ваш ли это случай, доступным даже школьнику практически не умеющему обращаться с мультиметром?

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Распиновка разъема 4 пин

Если при установленном процессоре отключить на материнской плате разъем дополнительного питания процессора 4 pin и посмотрев по цветам где у нас находится желтый провод +12 вольт, и черный, земля, или GND, и установив на мультиметре режим звуковой прозвонки прозвонить на данном разъеме материнской платы между желтым и черным проводами у нас зазвучит звуковой сигнал, это означает что пробит один или несколько мосфетов.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Монтаж транзистора на материнке

Но как определить какой из мосфетов, какой фазы питания у нас пробит, ведь мосфеты всех фаз питания процессора будут звониться как будто они все находятся в коротком замыкании – посмотрите схему, ведь они стоят параллельно и будут звониться при пробитии через низкоомные дроссели питания? В данном случае, проще всего выпаять одну ножку дросселя или если дроссель в корпусе, да и мне лично было бы так намного удобнее, дроссель целиком.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Процессор, проводя измерения с помощью мультиметра на мосфетах нужно вынимать, так как он имеет низкое сопротивление, которое может ввести в заблуждение при измерениях. Так вот, выпаяв из схемы дроссель мы исключаем то самое влияющее всегда на правильность результатов измерений сопротивление всех, параллельно включенных радиодеталей. Сопротивление, как известно, всегда считается при параллельном соединении, по правилу “меньше меньшего”.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Схема питания процессора

Иначе говоря, общее сопротивление всех подключенных параллельно радиодеталей будет меньше, чем сопротивление детали имеющей самое меньшее сопротивление, стоящей в нашей цепи при параллельном соединении.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Полевой транзистор – изображение на схеме

Так вот, как мы видим по схеме, если у нас один из мосфетов пробит – он будет своим низкоомным сопротивлением, шунтировать и все остальные фазы питания. А выпаяв все дросселя мы тем самым разъединяем все параллельные цепочки на отдельные цепи, при которых остальные фазы перестают влиять на результаты измерений в проверяемой цепи.

Итак, виновник КЗ (короткого замыкания) цепи питания найден, теперь нужно его устранить. Как это сделать, ведь паяльный фен есть в домашней мастерской не у всех начинающих радиолюбителей? Для начала нам потребуется демонтировать, выпаять с платы установленные обычно вплотную электролитические конденсаторы которые будут мешаться нам при демонтаже и к тому очень не любят перегрева.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльник ЭПСН 40 ватт фото

После чего у них обычно резко сокращается срок службы. Сам демонтаж конденсаторов, если учитывать некоторые нюансы, легко выполняется при помощи любого паяльника мощностью 40-65 ватт. Желательно имеющего обработанное, заточенное в конус жало. Сам я имею паяльную станцию Lukey и паяльный фен, но пользуюсь для демонтажа конденсаторов обычным паяльником 40 ватт ЭПСН с жалом заточенным в острый конус.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Паяльный фен фото

Правда тут есть один нюанс – для удобства работы применяю покупной диммер на шнуре, который выпускается для ламп накаливания но отлично подходит и для регулирования мощности паяльника. Осталось лишь подцепить к нему розетку для удлинителя, идущую с креплением на шнур и походный диммер готов.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Диммер на шнур 220В

Стоимость данного диммера была довольно скромной, всего порядка 130 рублей, также подобные диммеры видел и на Али экспресс – это для тех, кто не имеет доступа к радиомагазинам с хорошим выбором радиотоваров. Но вернемся к демонтажу сначала конденсаторов, а затем и мосфетов.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

ПОС 61 припой с канифолью

Если с конденсаторами эта процедура не имеет никаких сложностей, за исключением одной фишки применяемой для того, чтобы снизить общую температура плавления бессвинцового припоя, имеющего, как известно, более высокую температуру плавления чем припой применяющийся для пайки электроники ПОС-61.

Так вот, мы берем трубчатый припой с флюсом ПОС-61, желательно диаметром не более 1-2 миллиметров, подносим его к контакту конденсатора с обратной стороны платы и прогревая, расплавив его, осаждаем припой на каждом из двух контактов конденсатора. С какой целью, мы производим эти действия?

  1. Цель первая: путем диффузии сплавов смешения бессвинцового припоя и ПОС-61, мы понижаем общую темперауру плавления образовавшегося сплава.
  2. Цель вторая: чтобы максимально эффективно передать тепло от жала паяльника к контакту, мы условно говоря, греем контакт небольшой капелькой припоя, передавая тепло при этом намного эффективнее.
  3. И наконец, цель третья: когда нам требуется очистить после демонтажа конденсатора отверстие в материнской плате для последующего монтажа, не важно при замене конденсатора или монтаже обратно, как в этом случае этого же конденсатора, мы облегчаем этот процесс проткнув отверстие в расплавленном припое предварительно снизив общую температуру сплава внутри нашего контакта.

Здесь нужно сделать еще одно отступление: для этой цели многие радиолюбители применяют различные подручные средства, кто-то деревянную зубочистку, кто-то заостренную спичку, кто-то иные предметы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Алюминиевый конический пруток

Мне в этом отношении повезло больше – остался с советских времен от одной из монтажниц конический алюминиевый пруток, который значительно облегчает выполнение данной работы.

С его помощью нам достаточно прогревая контакт вставить пруток поглубже в отверстие контакта. Причем данное действие следует проводить без фанатизма, всегда помня о том, что материнская плата это многослойная плата, а контакты внутри имеют металлизацию, иначе говоря металлическую фольгу, сорвав которую если вы недостаточно прогрели контакт или резко вставили предмет которым прочищали отверстие в контакте, вы можете привести материнскую плату или любое другое устройство имеющее подобную сложную конструкцию печатной платы в устройство, уже не подлежащее ремонту.

Итак, все трудности преодолены, конденсаторы успешно демонтированы, переходим наконец к замене наших мосфетов, то есть цели нашей статьи. Собственно любая процедура замены детали подразумевает собой три этапа: сначала демонтаж, затем подготовка платы к последующему монтажу, и наконец сам монтаж новой детали или ранее демонтированной с донорской платы этим или другим способом.

Если у вас есть паяльный фен – здесь все просто, устанавливаем температуру, рекомендуемую в Даташите для демонтажа нашей детали, которую она легко перенесет и не придет при этом в негодность, наносим флюс и выпаиваем деталь. Монтаж при наличии фена возможен также с его помощью нанеся предварительно флюс. Также возможен монтаж и с помощью паяльника, либо от паяльной станции, либо при отсутствии ее при помощи паяльника 25 ватт ЭПСН с остро заточенным жалом, я пользуюсь обычно паяльником для монтажа.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Ни в коем случае нельзя использовать паяльники с мощностью 40-65 ватт, особенно дедушкины в виде топора для монтажа мосфетов на плату (по крайней мере при отсутствии диммера с помощью которого мы сможем понизить температуру жала паяльника). В начале статьи было упоминание о варианте демонтажа мосфетов для начинающих не имеющих в мастерской паяльного фена, сейчас разберем этот вариант подробнее.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Сплав Вуда фото

Есть такое замечательное изобретение – сплавы Розе и Вуда, особенно это касается сплава Вуда имеющего более низкую температуру плавления, чем сплав Розе. Эти сплавы имеют очень низкую температуру плавления, порядка 100 градусов, плюс – минус уточнять не буду, не суть так важно. Так вот, откусив бокорезами небольшую капельку любого из этих сплавов и разумеется нанеся флюс, мы кладем данную капельку на контакты нашего мосфета и прогревая жалом паяльника осаждаем его на контактах.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Причем со стороны Стока, среднего контакта имеющего большую площадь соприкосновения с платой, мы наносим значительно больше данного сплава. Цель данной операции? Также как и в случае с нанесением сплава ПОС-61, мы снижаем, причем на этот раз значительно существеннее, общую температуру плавления припоя, облегчая тем самым условия демонтажа.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж микросхем без фена

Данная операция требует аккуратности от исполнителя для того чтобы при демонтаже не оторвать пятаки контактов с платы, поэтому если чувствуем что прогрели недостаточно, а греть требуется попеременно быстро меняя жало паяльника у этих трех контактов, немного покачивая пинцетом деталь, разумеется без фанатизма. Произведя данную операцию 3-5 раз уже будешь машинально чувствовать когда контакты детали достаточно прогреты, а когда еще нет.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Демонтаж с помощью оплетки

У данного способа демонтажа есть один минус, но при наличии опыта это не становится проблемой: перегрев при демонтаже мосфетов с плат доноров. В случае если же вы приобрели новый мосфет в радиомагазине и уверены в том, что демонтируете пробитый мосфет, перегрев становится не очень критичен. После демонтажа следует обязательно убедиться в том, пропало ли замыкание на контактах мосфета на плате, редко но к сожалению иногда случается и так, что наш якобы пробитый мосфет был ни при чем, а влияли драйвер или ШИМ контроллер на результаты измерений, которые и пришли в негодность. В данном случае без помощи паяльного фена будет не обойтись.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Корпус SO-8 микросхема

Лично демонтировал много раз данным способом микросхемы в корпусе SO-8, применяя на контактах с полигонами иногда паяльник мощностью 65 ватт и немного убавив его мощность диммером. Результат при аккуратности исполнителя практически 100% успешный. Для микросхем в SMD исполнении, имеющим большее количество ног, данный способ к сожалению бесполезен, потому что прогреть большее количество ножек без специальных насадок проблематично и очень высока вероятность оторвать пятаки контактов на плате.

Имел такую возможность, один раз был срочный ремонт ЖК телевизора в небольшой мастерской не имеющей паяльного оборудования, микросхема в корпусе SO-14 была демонтирована, но к сожалению вместе с двумя пятаками контактов. Проблемой это не стало – недостающие связи были брошены проводом МГТФ от ближайших контактов имеющих соединение дорожками с оторванными контактами. Телевизор был возвращен к жизни, жалоб от клиента не было.

При подобном способе демонтажа на плате всегда остаются “сопли” – бугорки припоя, которые легко убираются с платы сначала с помощью оловоотсоса, затем следует пройтись демонтажной оплеткой по контактам, смоченной во флюсе. Я всегда использую при монтаже и демонтаже самостоятельно приготовленный насыщенный спирто-канифольный флюс, получаемый путем растворения в 97 % аптечном спирте-денатурате Асептолин, мелко растолченной в порошок канифоли.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Затем нужно дать раствору – флюсу настояться двое-трое суток до растворении канифоли в спирте, периодически многократно взбалтывая, не давая выпасть в осадок. Данный флюс наношу с помощью кисточки от лака для ногтей, соответственно налив получившийся флюс в очищенную от следов лака 646 растворителем бутылочку. Грязи на плате остается при использовании этого флюса в разы меньше, чем от всяких китайских флюсов, типа BAKU или RMA-223.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Делаем спиртоканифольный флюс

Ту же, которая все-таки останется, мы убираем с платы с помощью 646 растворителя и обычной кисточки для уроков труда. Данный способ по сравнению с удалением следов флюса даже с помощью 97% спирта имеет ряд преимуществ: быстро сохнет, лучше растворяет и оставляет меньше грязи. Рекомендую всем как отличное бюджетное решение.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

646 растворитель фото

Единственное замечу: будьте аккуратнее с пластмассовыми деталями, не наносите на графитовые контакты, типа как встречаются на платах пультов и потенциметров, и никогда не торопитесь, дайте хорошенько просохнуть плате, особенно если есть риск затекания растворителя под стоящие рядом SMD и тем более BGA микросхемы.

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

Графитовые контакты платы пульта

Таким образом процесс монтажа-демонтажа мосфетов на материнских платах не является чем-то сверх трудным, при наличии более-менее прямых рук и доступен для выполнения любому радиолюбителю, имеющему небольшой опыт ремонтов. Всем удачных ремонтов – AKV.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *